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ABSTRACT

In eastern Arkansas, the use of surface water for crop irrigation is steadily increasing in response to 
declining aquifers. Effective conjunctive water management requires accurate and timely information 
on the locations, sizes, and numbers of on-farm irrigation reservoirs. A method for remotely locating 
and characterizing on-farm reservoirs was developed using relative elevation and near-infrared imagery. 
With 62% accuracy, the method automatically identified 429 irrigation reservoirs within a 1.9-Mha 
area in less than an hour using an off-the-shelf laptop. Reservoirs not accurately identified (i.e., false 
negatives) were caused by the presence of vegetation or turbidity within the reservoirs. There were 
no false positive detections. This approach for identifying elevated reservoirs is applicable across 
the Mississippi Alluvial Plain (MAP) that encompasses over 4-Mha of irrigated cropland and other 
agricultural areas having low-relief.
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INTRODUCTION

The Mississippi River Valley Alluvial Aquifer (MRVAA) provides 90% of the irrigation water applied 
to crops in the Mississippi Alluvial Plain (MAP) (Leslie et al., 2022). The aquifer has been over-
exploited for decades (Bedinger et al., 1964; Clark et al., 2011; 2013; Vories & Evett, 2014). In order 
to capture precipitation/runoff and reduce groundwater withdrawals, irrigation reservoirs are being 
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constructed on farms throughout the MAP (Evett et al., 2003). Additionally, in central Arkansas, two 
large surface water diversion projects will use on-farm reservoirs to store water removed from the 
White River and the Arkansas River to offset groundwater pumping (USACE, 1999; 2007).

These on-farm reservoirs can be stand-alone structures or may be part of more complex systems 
having a tailwater recovery ‘pit’ or ‘ditch’ to capture runoff (Figure 1). In both cases, the reservoirs are 
generally symmetrical (e.g., square, rectangular, triangular), relatively compact (i.e., small perimeter-
to-surface area ratio), and surrounded by raised earthen levees (Yaeger et al., 2018).

Strategies to conjunctively manage surface and ground water resources (Kovacs et al., 2016; Singh 
et al., 2016) have been adopted in Arkansas (ANRC, 2014; 2016; 2017; 2019), Mississippi (YMD, 
2006), Louisiana (E&E INC, 2011), and Missouri (MDNR, 2020). As a result, accurate and up-to-date 
information on irrigation reservoirs is necessary to allow resource managers and policymakers to (a) 
assess how existing reservoirs may impact groundwater demand, (b) determine where surface waters 
could support additional reservoir(s), (c) estimate maintenance costs and life expectancies of existing 
reservoir infrastructure, and (d) determine carrying capacity of reservoir area per watershed area.

Figure 1 shows examples of (A) two on-farm irrigation reservoirs in Eastern Arkansas that receive 
water pumped from streams and/or a tailwater recovery ditch (center) and (B) corresponding elevation 
profile. Note the western reservoir’s high turbidity in contrast to the eastern reservoir.

The construction of reservoirs in the MAP may occur solely at the expense of farmers and/or 
landowners but more commonly occurs with assistance from federal and state agencies (Czarnecki et 
al., 2024; King, 2021). In Arkansas, approximately $45 million were awarded by the USDA Natural 

Figure 1. Irrigation reservoirs in eastern arkansas and their corresponding elevation profiles
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Resources Conservation Service (NRCS) between 2004 and 2018 for reservoir, tailwater recovery, and 
related construction (King, 2021; USDA-NRCS, 2019). The locations of reservoirs recently constructed 
using public funds are generally known to state and federal personnel, but this is not necessarily true 
for older reservoirs and/or those constructed using private funds. Thus, reservoir locations, sizes, and 
construction dates are difficult to determine for a region as vast and dynamic as the MAP.

While it had been decades since the earliest reservoirs were constructed, the numbers and sizes of 
irrigation reservoirs in Arkansas were not available until Yaeger et al. (2017) conducted comprehensive 
inventories for the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical 
Groundwater Area (CRCGA). The authors used three-band National Agriculture Imagery Program 
(NAIP) imagery (USDA-FSA, 2011) to visually identify 143 on-farm reservoirs in the nearly 0.9-
Mha CRCGA and 632 reservoirs in the approximately 1-Mha GPCGA. Their goal was to perform a 
census, and their method of image interpretation relied on expert knowledge and visual identification 
based on their familiarity with the reservoirs in eastern Arkansas. When a reservoir was found, the 
boundary was then delineated by manually defining the boundary by hand using the editing tools in the 
Environmental Systems Research Institute (ESRI) ArcMap mapping software. The reservoir polygons 
were in the form of vector polygon features. This inventory took many months to perform, not only 
because of ground truthing, but also because of the large area and the heterogeneous characteristics 
of the bodies of water used as irrigation reservoirs. Unfortunately, given the dynamic nature of the 
MAP, these data are already dated. Moreover, the visual methods used are time-consuming and, thus, 
do not lend themselves to timely inventories needed by landowners, water planners, policymakers, 
modelers, and other stakeholders.

There are multiple authoritative datasets that reference waterbodies in the MAP, including the 
National Land Cover Dataset, the Cropland Data Layer (CDL), and the National Hydrography Dataset 
(NHD). Unfortunately, these datasets do not differentiate between irrigation reservoirs and many 
other common waterbodies such as aquacultural ponds, ditches, canals, lakes, borrow pits, settling 
basins, etc. Also, the nature of the high rate of landform modifications for irrigation management 
in this actively managed agricultural landscape and the ephemeral waterbodies (flooding of fields 
both for agriculture and waterfowl) complicates the classification of waterbodies in such regions. 
Furthermore, such high rates of change render many such datasets out-of-date in a matter of years. 
Currently, there is not an efficient method for differentiating between irrigation reservoirs and other 
bodies of water using remotely sensed data.

Multi-spectral imagery has long been used to differentiate water from land (Gao, 1996). More 
recently, multi-spectral imagery was used to create deep-learning algorithms to classify irrigation 
systems (Raei et al., 2022). The delineation of natural water features in alluvial settings with satellite 
imagery has been successfully accomplished (Frazier & Page, 2000; Alexandridis et al., 2008). In dry 
environments where reservoirs are easily differentiated from natural water features, remote sensing has 
proven useful in estimating reservoir volume, but it requires manual surveying to estimate reservoir 
depth (Rodrigues et al., 2012). Satellite imagery has been useful for automated mapping of flooded 
agriculture like paddy rice (Zhang et al., 2021). Flooded rice agricultural landscapes—as a landcover 
type—are unique in that paddies are bounded by levees, and water is obscured by rice after canopy 
closure. Also, the fields may be flooded in the off season, making the differentiation of a field from 
a reservoir difficult with imagery alone.

One difficult problem for remote sensing of irrigation reservoirs is differentiating reservoirs from 
natural water features. Digital elevation models (DEMs) are often used in hydrologic modeling, such 
as in delineating streams, a process tailored to geographic information systems (GISs) (DeVantier & 
Feldman, 1993; Preusch & Rezakhani, 1999). DEMs are also useful in the design and quantification 
of reservoir volume (Masharif & Khasanov, 2021). Wu et al. (2019) integrated elevation surfaces 
with aerial imagery to find lakes and the boundaries of their respective depressions. They identified 
water using an unsupervised classification of NAIP imagery using both the Normalized Difference 
Water Index (NDWI) (McFeeters, 1996) and the Normalized Difference Vegetation Index (NDVI) 
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(Tucker, 1979) to model the ephemeral shorelines of the natural bodies of water in a region of lakes 
in Minnesota. Then, to model wetland inundation, they incorporated remote sensing method, Light 
Detection and Ranging (LiDAR). Thus, LiDAR-based elevation surfaces were used to estimate the 
maximum extents of the wetlands.

The near infrared (NIR) threshold technique for classifying water is a method involving a single 
band. When classifying land cover with RapidEye satellite imagery in Eti-Osa (a sub-region of Lagos, 
Nigeria), Mondejar and Tongco (2019) found the NIR threshold outperformed other indices like the 
NDWI, the modified normalized difference water index (MNDWI), and one of two automated water 
extraction indexes (AWEIs) (Feyisa et al., 2014). It is notable that this means of finding water is 
simpler than indices involving multiple bands.

GIS and remote sensing are often used in conjunction to solve spatial problems; for example, 
Khan et al. (2022) studied historical flood data in flood hazard zones in the Budhni Nullah District 
Peshawar, Pakistan. They used Landsat satellite imagery and qualitative data collected by local sources 
to learn the causes of the flooding, determine where damage occurred, and delineate the flood zones 
along rivers in the region. They used a variety of programs including statistical data analysis software, 
Statistical Package for the Social Sciences (SPSS) for statistical quantification; Earth Resources 
Development Assessment System (ERDAS) Imagine, remote sensing image processing software for 
image processing; a global positioning system (GPS) application for in-situ collection of location; 
and a variety of ESRI ArcGIS Spatial Analyst tools for hydrological modeling.

LiDAR-based elevation surfaces and aerial imagery have also been integrated to find damage 
to flood levees along the Vistula River in Annopol, Poland (Bakuła et al., 2020). These structures 
are similar to the levees around raised, on-farm reservoirs, albeit they are used for flood control 
instead of irrigation water storage. Another study related to river flooding used DEMs to characterize 
floodplains along the Opava River in the Czech Republic. One notable aspect of this study was the 
use of the ArcGIS’s ModelBuilder tool to string together multiple geoprocessing tools in order to 
“perform the whole delineation process automatically after setting several input parameters” (Hartvich 
& Jedlička, 2019).

The Problem
The problem we are highlighting is the need to update and maintain a list of regional irrigation 
reservoirs in the Mississippi Alluvial Plain (MAP). The singular inventory of reservoirs produced by 
Yaeger et al. (2017), while excellent in quality, is aging. Many new reservoirs have been established, 
and existing reservoirs have been modified since the inventory was conducted. To effectively manage 
water in the region, this inventory needs updating again.

The Aim: A New Solution
The methods used to generate this inventory were time consuming and high-effort, requiring expert 
regional knowledge of existing reservoirs, image interpretation conducted via manual review of aerial 
imagery, and manual delineation of irrigation reservoir boundaries using ESRI’s ArcMap mapping 
software. Our conjecture was that by using the same multi-spectral imagery, NAIP, and DEMs, we 
could construct a GIS model to automatically differentiate on-farm reservoirs from natural bodies of 
water and produce a set of polygons for these reservoirs faster than Yaeger et al. (2017) using ArcGIS 
Pro. Such a model could then be used to regularly update and maintain an authoritative database of 
irrigation reservoirs for use in planning and conjunctive management of water resources. Optimally, 
such a tool would be usable with different spatial resolutions and data sources and would be useful 
to others outside our region but with similar low relief settings like alluvial or coastal plains.

Objectives
Our aim was to create an automated method for identification of on-farm reservoirs in northeast 
Arkansas. Specific objectives were to: (1) develop a model using ArcGIS Pro ModelBuilder that 
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can identify the locations and surface areas of on-farm irrigation reservoirs, (2) assess the accuracy 
of the model by comparison with the Yeager (2017) on-farm reservoir dataset, (3) record the raised 
status of the existing on-farm reservoir dataset, and (4) generate an updated inventory of on-farm 
reservoirs. Furthermore, we wanted to compare the on-farm reservoir inventory with water features 
from the National Hydrography Database (NHD) and water classes from Cropland Data Layer (CDL) 
to determine their usefulness in identifying on-farm reservoirs as waterbodies.

MATERIALS AND METHODS

Study Area
The study area is comprised of three contiguous regions of intensive agricultural production in 
northeastern Arkansas which itself lies within the MAP (Figure 2). The regions consist of the GPCGA, 
the CRCGA, and a non-critical groundwater area (CGA) representing the remaining portion of the 
MAP north of the GPCGA and west of the CRCGA (ANRC, 2019). Together, these three zones 
comprise a 2.3-Mha region immediately west and southwest of Crowley’s Ridge (Figure 2). Even 
though the watershed receives an average annual precipitation of approximately 1,000 mm, irrigation 
water availability is still a concern (Kresse et al., 2014). The MRVAA shows two significant cones 
of depression, one in the GPCGA and another in the CRCGA (Figure 2).

Figure 2. Map of the cones of depression in the MRVAA intersecting the CRCGA, GPCGA and Non-CGA boundaries
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Figure 2 depicts the GPCGA and CRCGA range from central to eastern Arkansas within the 
MAP that lay atop two cones of depression formed in the Mississippi River Valley alluvial aquifer 
MRVAA. The depth-to-water estimates are from 2020 (USGS, 2020).

Model Development
A model with seven sub-routines was constructed in ArcGIS Pro (V. ≥ 2.7.3 with the Spatial Analyst 
Extension; ESRI, Redlands, CA).

The model requires high spatial resolution (< 1- to 3-meter) input data, including: four-band 
aerial imagery (near-infrared, red, green, and blue), and a DEM with a spatial resolution of 1 m. It is 
expected that higher resolutions (≤ 1 m) for the imagery and DEM will produce more refined results, 
but lower resolutions (3-5 m) should provide meaningful results too. Thus, the model’s design makes 
it capable of being used with a wide range of datasets making it useful outside the study area and 
specific datasets presented in this project.

Four-band NAIP imagery from 2019 was used for its high resolution, NIR band capability, and 
bi-annual collection. For the DEM, the most recent available LiDAR-based, one-meter DEM (USDA-
FSA, 2019; USGS, 2011) was used. This tool was run using an off-the-shelf laptop (Dell Inc., Round 
Rock, TX, 78664; Model XPS 17, Intel Core i9-10885H CPU @ 2.40 GHz, 64GB RAM, 2TB SSD).

Initially, we intended to use the NDWI method of detecting water using multi-band aerial imagery 
(Gao, 1996). In our trial-and-error testing with NAIP imagery, while preparing the bands, we noticed 
that the NIR band alone was a good predictor for water. Therefore, we decided to include both methods 
in the model, so we could compare the results independently. The first process in the model reflects 
these two paths, described as the “NIR only” iteration and the “NDWI” iteration, respectively. The 
results for each iteration are reported separately in Table 3.

Equation (1) shows that the NDWI utilizes the green band and the NIR band.

NDWI
Green NIR

Green NIR
=

−
+

	 (1)

In both iterations of this step, four-band imagery is needed (Figure 3A), from which the NIR 
band and green bands are used to identify water (Figure 3B) with two different methods. All bands 
of NAIP imagery have eight-bit spectral resolution (28 = 256 light levels), where the pixel value 
ranges from 0–255. In NAIP (2019), green is the 2nd band, and NIR is the 4th band in the dataset. 
Vegetation reflects green light and NIR resulting in relatively high reflectance values for vegetation 
in the green and NIR band. In contrast, water absorbs NIR, resulting in relatively low reflectance 
values for water in the NIR band.

Figure 3 represents a stepwise approach used to identify irrigation reservoirs in northeast Arkansas 
where (A) represents an example of a NAIP 4-band image using a 4-3-2 (NIR-Red-Green) band 
combination; (B) shows the NIR band displayed in 8-bit black and white where white is reflective and 
black is absorptive; (C) depicts land and water reclassified using an NIR reflectance threshold where 
Reflectance ≤15% is water; (D) shows land polygons deleted, leaving water (Blue); (E) presents a 
reservoir in the digital elevation model; (F) shows use of two concentric buffers to first identify if a 
levee surrounds a waterbody (Purple) and relative elevation of surrounding terrain (Reddish Orange); 
(G) presents the compactness test formula; and (H) represents how a waterbody scoring “0” on the 
compactness test designates as “Not-Compact” and one scoring “1” designates as “Compact.”

When viewing the Yaeger et al. (2017) reservoir polygons overlaid atop the NIR band, it was 
observed that water was represented by low NIR values. With a short survey, we determined that the 
threshold for water was below NIR values of 40, which corresponds to ~15% reflectance in this band.

This method of water classification is known as the NIR threshold method and similarly 
outperforms other more complex methods in Mondejar and Tongco (2019). Therefore, in this “NIR 
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only” iteration of the model, we reclassify two classes: water (0–40) and land (41–255). If using the 
model with aerial imagery of another bit depth, this threshold will need to be adjusted as a calibration 
step, which is specific to a particular set of imagery at a particular bit depth which was collected in a 
particular season and place. For example, a 12-bit spectral resolution (212 = 4096 light levels) would 
use a setting of 615/4096 to maintain 15% reflectance.

The NDWI outputs a floating-point raster value of 1.0 to -1.0, where the higher the number, the 
more likely the pixel is to be water. We classify the NDWI outputs such that the highest ~15% of this 
range would be classified as water, and the lower ~85% would be classified as land. This threshold 
is chosen to match the “NIR only” method. In numeric terms, the NDWI index output is classified 
as water if greater than or equal to 0.7, and land, if less than 0.7. This is somewhat higher than the 
0.52 threshold referenced by Ji et al. (2009), but they are using Landsat. (Note that this threshold 
might need to be calibrated each time it is used in a different situation or with different data.) After 
each iteration above is performed, the remainder of the model is run twice, once with the NIR only 
output and again with the NDWI output. Based on our testing, we find the NIR output to be more 
useful, but the NDWI methods are saved in the model we share with the supplemental ArcGIS Pro 
project folder (.zip).

Following the identification of water, the raster is reclassified into water/land then vectorized 
into a polygon feature class (see Figure 3C). The vector format provides the attribute table which is 
used to store each waterbody’s spatial characteristics in the following steps. The land polygons are 
deleted, so that the dataset is comprised of only water features. An area column (field) is added to the 
polygon’s attribute table, and the surface area (ha) within each water feature is calculated/recorded 

Figure 3. Stepwise approach used to identify irrigation reservoirs in northeast Arkansas
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in this field. Waterbodies with areas below 0.4-ha in size are removed from the dataset (Figure 3D). 
In our trial-and-error process of choosing this threshold, we notice that this step greatly reduces the 
processing time because of the reduction in the number of waterbodies. This deletion also helps to 
reduce pixilation errors and areas where shadows or forests are misidentified as water. We also notice 
as we build the model that some waterbodies contain vegetation (e.g., submerged trees) and other 
pixilation errors. The trees and pixilation errors cause the “water features” to contain pixels that do 
not meet “water” criteria. Therefore, we then fill the holes in waterbody polygons and smooth the 
polygon’s outer edges.

We analyze the area/perimeter ratio to help distinguish between compact and not-compact 
waterbodies (Figure 3G and 3H). Compact waterbodies are typically man-made while not-compact 
waterbodies often were streams, rivers, or oxbow lakes. Waterbodies with ratios greater than 0.01 
are considered compact while waterbodies with ratios less than 0.01 are considered not compact 
(see Figure 4).

Figure 4 depicts a histogram of waterbody area-to-perimeter (A/P) ratios. Values less than 0.015 
are less compact, signifying natural water features while values greater than 0.015 are more compact, 
signifying man-made features.

We then created buffer polygons around each compact waterbody to determine a localized 
elevation for each feature. Three buffers were generated at 10-m (Buffer-1), 50-m (Buffer-2), and 
100-m (Buffer-3) zones respectively.

Buffer-1 is meant to contain the immediate boundary of the waterbody to essentially identify if it 
is surrounded by a raised, earthen levee. Buffer-2 is used as a gap to represent the engineered earthen 
berm outside the levee, and Buffer-3 represents the ring beyond the immediate area of the waterbody 
which we used to determine the elevation of the surrounding area (Figure 3F).

Using these buffer-polygons, we calculated the mean elevation of the levee (Buffer-1) and the 
surrounding terrain (Buffer-3). We then took the difference between these two means and recorded 
it for each waterbody.

An example of the results table is shared in Table 1, while the full table in the supplemental 
ArcGIS project folder (.zip) is shared with this article. If the difference is positive, the waterbody is 
raised; if the difference is negative, the waterbody is not raised. In our trial-and-error testing, we decide 

Figure 4. Histogram of waterbody area-to-perimeter (A/P) ratios
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to identify waterbodies raised above their surroundings by more than 1 m as irrigation reservoirs. 
Because soil excavated in digging a reservoir is used to construct earthen levees that surround the 
reservoir, this categorization is intended to differentiate on-farm irrigation reservoirs from “borrow” 
pits, low-lying aquaculture ponds, and other waterbodies not surrounded by levees.

It should be noted that a person standing beside a farm reservoir would often perceive the relative 
height of its levees as being greater than 1 m. However, when evaluating the reservoir in relation 
to its position in the broader landscape, which contains ditches, roads, and cultivated area, 1 m is 
determined to be a reasonable threshold (Figure 2-B). In our initial testing, the 1-m criteria prove to 
be the most accurate during model validation, but many reservoirs fall under this threshold. Therefore, 
we group waterbodies into four classes by compactness and levee height. The waterbody classes are 
summarized in Table 2. Examples of these types can be seen in Figure 6.

Table 1 indicates an example of the mean statistics calculated for each zone of the waterbody 
showing how relative elevation in landscape was used to differentiate irrigation reservoirs from other 
man-made structures in the Arkansas portion of the Mississippi Alluvial Plain. The full table in the 
supplemental ArcGIS project folder (.zip) is shared with this article.

Table 2 shows the classification criteria used to distinguish on-farm irrigation reservoirs 
from non-elevated, man-made waterbodies such as ponds and borrow pits in the Mississippi 
Alluvial Plain (MAP).

For reference, model outputs are compared to waterbodies identified by the Cropland Data 
Layer (CDL; USDA-NASS, 2019) and the National Hydrography Dataset (NHD; USGS, 2019). 
The CDL and NHD are generally authoritative datasets which have water classes and features, but 
our comparisons with NAIP imagery, Google Earth imagery, the imagery base map from ArcGIS 
online, and our model output reveal that these datasets are not fit for assessment of our findings in our 
study area. The methods used to generate these datasets do not show a large number of the reservoirs 
found by our model and appear to show a number of flooded fields as bodies of water. Therefore, we 
feel that they do not merit inclusion in the results. We suspect there is a minimum area threshold for 

Table 1. Example comparison of mean elevation in buffer zones determining if the waterbodies are raised

Waterbody 
Feature ID

Elevation of Levee 
(10 m Buffer)

Elevation of Terrain 
(50 - 100 m Buffer)

Mean Elevation 
Difference (m)

1 98.91 95.56 3.35

2 127.70 123.27 4.43

3 89.51 85.29 4.22

4 77.92 74.37 3.56

n … … …

Table 2. Waterbody classification criteria

Waterbody Classification Criteria Class

Not Compact Null

Not Raised 0

0 < Raised < 1 m 1

Raised > 1 m 2
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NHD, and for both datasets, they could be effects from turbidity in combination with vegetation and 
seasonal variability in water level that mask reservoirs from being classified as water in these two 
datasets. We come to believe that they are just not intended for the purpose we wanted to use them 
for. Since they are not created in a manner that makes them useful as an assessment of irrigation 
reservoirs, the results of these comparisons are given in the supplemental materials document (Table 
A-1 and Table A-2) and shared as layers in the supplemental ArcGIS project folder (.zip) which is 
shared with this article.

Assessment of Model Identified Reservoirs
An assessment was performed on the model identified reservoirs using the most recently available 
“Imagery” basemap via ArcGIS Online Webmap (Esri, 2023). It was observed that this dataset is <1 
m spatial resolution in our study area, which make it higher resolution than the 1 m NAIP data used 
in the model. Sample points were stratified across three classes based on the model outputs. These 
classes were “not water,” “water,” and “reservoir.” Where not water was the area not found to be water 
within the study area, water was the area found to be water by the model in step one of the model 
and reservoirs are all compact bodies of water that were larger than the minimum threshold of 0.4 
ha and raised above the surrounding land. This included Class 1 and Class 2 (Table 2) waterbodies. 
Each of these three classes were assessed with 100 points each.

RESULTS

Comparison of NIR to NDWI Method of Finding Water
Using the NDWI method of finding water results in a much lower number of waterbodies than the 
NIR method (Table 3). These results validate the selection of the NIR method of water classification 
from the 2019 NAIP imagery. However, the tools for choosing the method (if the user wants) are still 
available in the model which is shared along with the supplemental ArcGIS Pro project folder (.zip). 
This is done for the eventuality that they perform well in other regions or with other aerial imagery 
sources or imagery collected in different seasons.

A comparison of using the “NIR only” method versus the NDWI method was conducted for a 
portion of the study area to evaluate how the two methods compare. NIR captured over double the 
amount of water features compared to the NDWI method (See Table 3). Both models use the 15% 
threshold values for water features (NIR = 0–40, NDWI = 0.70–1).

Table 3. Comparison of waterbodies found using NIR method vs. NDWI method

Classification Value Number of Waterbodies 
(NIR) Number of Waterbodies (NDWI)

Not Compact Null 2,929 1,181

Not Raised 0 773 419

0 < Raised < 1 m 1 408 248

Raised > 1 m 2 199 137

Total Number of Waterbodies N/A 4,309 1,985
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Reservoir Detection in the CRCGA and GPCGA Study Areas
Once the necessary spatial data were compiled, less than one hour of laptop computing time was 
required to locate a total of 3,527 on-farm irrigation reservoirs in a 2.38-Mha study area made up of 
the CRCGA, GPCGA, and the Non-CGA area from Figure 2 (see Table 5). These reservoirs were 
estimated to have a combined surface area of 15,864 ha for the CRCGA, GPCGA, and Non-CGA 
areas combined (see Table 5). Note that these reservoir counts and surface areas in the CRCGA and 
GPCGA are larger than that of Yaeger et al. (2017) because the present study (a) encompasses a 
larger study area and (b) identifies any additional reservoirs constructed after the 2015 end-point of 
the Yaeger et al. (2017) study.

Table 4 is a summary table of area (ha) resulting from the model steps in the study area. The 
area changed at four different model steps: 1, 2, 3, and 7 (see supplemental materials for technical 
descriptions of all model steps). Step 1 is defining the study area; Step 2 is classifying landcover 
as water/land; Step 3 is discarding water polygons < 0.4 ha; Step 7 is filtering water by elevation 
class resulting in two classes of raised waterbodies representing potential reservoirs. The percentage 
represents the ratio of water:land comparing the water resulting from each step to the area of land 
from Step 2.

Table 4. Surface areas (ha) resulting from each model step

Study Area

Step 1 2,384,109

Water Land Water:Land

Step 2 267,167 2,116,942 12.62%

Compact Waterbodies Water:Land

Step 3 64,866 3.06%

Reservoirs Water:Land

Step 7 15,864 0.75%

Table 5. Surface areas and counts of model-identified irrigation reservoirs

Study Area Reservoir Classa Reservoir Count Water Surface Area (ha)

CRCGA

1 432 1,333

2 209 1,821

1 & 2 641 3,154

GPCGA

1 1,509 4,908

2 1,100 6,966

1 & 2 2,609 11,874

Non-CGA

1 214 654

2 63 182

1 & 2 277 836
aSeeTable 2 for reservoir elevation classes.
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Table 5 represents the numbers and water surface areas of model-identified irrigation reservoirs 
in the CRCGA, the GPCGA, and the Non-CGA, as of July 2019.

MODEL VALIDATION AND ACCURACY ASSESSMENT

The assessment of the model accuracy results in a producer’s accuracy for a given class representing 
the proportion of pixels that were classified correctly (2). The producer’s accuracy for not water is 
99%; for non-reservoir water is 87%; and for reservoirs is 60%. The errors in producer’s accuracy 
are known as errors of omission or Type 2 errors, which for not water is 1%; for non-reservoir water 
is 13%; and for reservoirs is 40%. The user’s accuracy for a given class represents the proportion of 
pixels identified on the map as being in that class that are actually in that class on the ground (3). 
The user’s accuracy for not water is 88%; for non-reservoir water is 68%; and for reservoirs is 100%. 
The errors in user’s accuracy are known as errors of commission or Type 1 errors, which for not 
water is 12%; for non-reservoir water is 38%; and for reservoirs is 0%. The overall accuracy takes 
the sums of the correctly identified pixels in all classes, divided by the number of sample points (4). 
The overall accuracy across these three classes is 82%. The Kappa coefficient evaluates how well 
the classification performs as compared to random, ranging from -1 to 1; a negative value indicates 
the classification is worse than random, a value of zero would be the same as random, and a positive 
value indicates that the classification is better than random (5). The Kappa coefficient is 0.73. See 
Table 6 for the Confusion Matrix of the assessment.

Producer sAccuracy
ncorrectlyclassified pixels

class x
cl' = aass x

columntotal
�

�
	 (2)

User sAccuracy
ncorrectlyclassified pixels

class x
class' = xx

rowtotal�
	 (3)

Overall Accuracy
correctlyclassified pixels

nof sample p
  

  

   
=

ooints
	 (4)

Kappa
nof sample points nof corrrectlyclassified pixe

=
� � � �*� � � � � lls sumof rowtotals columntotals

nof sample points

( )−( )� � � * �

( � � � 22) � � � * �−( )sumof rowtotals columntotals
	 (5)

Table 6 represents the Accuracy Assessment Confusion Matrix, where N = not water, W = water 
but not reservoirs, and R = reservoirs. The table includes Producer’s and User’s Accuracy for each 
class, Overall Accuracy, and Kappa. The reference data is NAIP 2019.

This assessment affirms that irrigation reservoirs are most likely to be found using this method as 
long as the model is accompanied by recent elevation data. Of the sample points representing errors 
of commission, all false reservoir detections were instead aquaculture ponds that were raised above 
the surrounding area. Furthermore, of the sample points representing errors of omission, and therefore 
not identified by the model, all are “false negative” omissions due either to the presence of excess 
turbidity (Figure 5-A) or vegetation growing inside of the reservoir (Figure 5-B). Figure 6 illustrates 
examples of four different classes of reservoirs found by the model. These include waterbodies that 
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are not compact and compact waterbodies that are not raised (these represent the water class), compact 
waterbodies that are raised (but not more than one meter), and compact waterbodies that are raised 
more than one meter (these represent the reservoir class).

Figure 5 presents examples of (A) turbidity and (B) vegetation that interfere with NIR spectral 
reflectance, causing a 13% Type-II (false-negative) error rate in the automated detection of on-farm 
reservoirs, relative to a visually-curated dataset.

Table 6. Accuracy assessment confusion matrix

Reference Data

N W R row 
totals

User’s 
Accuracy

Classified data

N 99 13 0 112 88%

W 1 87 40 128 68%

R 0 0 60 60 100%

column totals 100 100 100

Producer’s 
Accuracy 99% 87% 60% 82.00% Overall 

Accuracy

0.73 Kappa

Figure 5. Examples of (A) turbidity and (B) vegetation interference
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Figure 6 shows examples of the four waterbody types classified using an automated detection 
tool in a 2.38-Mha region of eastern Arkansas. The waterbodies were classified as “not compact” 
(blue), “compact but not raised” (green), “raised but less than 1-meter” (red), and “raised greater than 
1-meter” (yellow). An on-farm irrigation reservoir, as defined by this project, is outlined in yellow.

DISCUSSION

The assembly of a quick running model implementing a variety of methods to find waterbodies, 
to determine and discriminate between them on the basis of compactness, and to classify compact 
waterbodies on the basis of elevation above the surrounding terrain is successfully accomplished in 
the model produced by this research. An accuracy assessment of the model output illustrates errors 
in the model that provide a variety of potential improvements that might be carried out in the future. 
Many of these potential improvements relate to temporal considerations. This includes not only the 
temporal resolution of the aerial imagery and elevation surfaces needed for the model, but also the 
seasonality of aerial imagery and the gap in time between the collection of the aerial imagery and 
the elevation surface. Furthermore, the spatial extent within which the model is appropriate might 
be expanded if global datasets of satellite imagery and elevation surfaces of sufficient resolution can 
be implemented.

The temporal resolution of data needed to run the model is an important source of error in the 
model. Such problems arise when there is a mismatch in timing between the elevation dataset and 
the spectral dataset. For example, if the reservoir was built after the DEM acquisition date, the model 
cannot identify the waterbody as being raised. Wu et al. (2016) also note the temporal shift from NAIP 
to Landsat as a source of error, as they modeled flooding inundation areas in water filled depressions 
in Minnesota. One way that this could be addressed in future modeling is by using multi-spectral 
imagery from a source that allows date matching to the elevation data source(s) collected at close to 

Figure 6. Waterbody classifications
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the same time. More practically, the aerial imagery can be slightly older than the elevation source; 
then, reservoirs in the imagery would be present in the elevation dataset. Error associated with the 
temporal problem might be acceptable in regions building an initial dataset, as subsequent updates 
would resolve over time. Another potential improvement might be choosing imagery dates in the 
spring. This is before irrigation occurs when reservoirs should be filled with winter precipitation. 
Early spring imagery could reduce the temporal error from NAIP which is collected mid-growing 
season when irrigation is occurring and vegetation in the reservoirs is leafed out.

While the imagery frequency is somewhat easily overcome (as mentioned above), the same is 
not true for elevation data. The elevation datasets available across this study area were collected from 
2011 to 2017. This indicates a low re-issue cycle for this type of data and will be the inherent temporal 
limitation for the model. This low temporal resolution for elevation data represents the primary 
limitation of this model. This also means that the optimal time to conduct reservoir inventories is set 
by the generation of updated elevation data.

With the proliferation of spaceborne high spatial resolution (≤ 1 m) collection platforms there is 
wide availability of multi-spectral imagery. The value of using elevation with multi-spectral imagery is 
revealed by this model, and effort should be made to further develop the means to collect ≤ 1-m DEMs 
on a shorter time cycle. In the US, this suggests a good reason for collecting LiDAR for 3DEP with 
NAIP—or at least, updating 3DEP on a similar timeframe to NAIP, such as every two to three years. 
In space, it might mean improving the Earth observation satellites with higher resolution elevation 
collection capabilities. Nonetheless, the model can still be used for surface water assessments in any 
region with high-resolution NIR imagery and high-resolution DEMs with the understanding that the 
relative dates of the imagery and DEM will limit the timeframe of reservoir assessment.

Because the study area is also home to aquaculture, errors associated with identification of 
fishponds as reservoirs were anticipated. This proved to be a significant source of error (40% of our 
errors of omission for the reservoir class), especially in the GPCGA. Turning the error into a positive 
characteristic, the model could be used to conduct aquacultural pond inventories for both reservoirs and 
the portion of fishponds that are raised above the surrounding terrain. If the model were repurposed in 
this way, it is possible the errors of omission for the reservoir class would have been zero. The overall 
model accuracy of 82% is pretty good, especially when considering that 100% of the reservoir class 
errors of omission are because the model identified elevated fishponds as reservoirs. This can almost 
be accepted as a non-error since the model was not designed to discriminate between types of raised 
man-made waterbodies. Unfortunately, the model did not find all fishponds, as noted from a number 
of non-raised waterbodies which are known to be fishponds by the authors. So, it seems dubious to 
repurpose the model to find reservoirs and only raised fishponds, but it would work, and the accuracy 
would dramatically improve. Future improvements to the model should consider this purpose.

The ‘Localized Elevation’ technique used in the model is only expected to be helpful for low 
relief regions, such as the MAP and other relatively flat alluvial plains worldwide. In an area of higher 
relief, on-farm reservoirs are typically constructed across small portions of upland watersheds where 
an earthen dam traps the water (NRCS, 2018). It may be possible to adjust the model to find such 
waterbodies by making modifications to the buffer rings and the statistics used to compare them.

While Mondejar and Tongco (2019) found the NIR threshold method outperformed other water 
finding indices, as did we, this technique of using the NIR band (Figure 5) alone for surface water 
detection might be inferior to other water detection methods. Notable among such indices is the 
NDWI ((1); Gao, 1996), which might perform better than NIR along other study regions with imagery 
collected in different seasons or with imagery collected with platforms other than NAIP. In the cases 
of the watersheds presented in this paper, the “NIR only” (aka NIR-threshold) method of running the 
model was more successful than the NDWI method. It should be noted, however, that both methods 
require the choice of a threshold when classifying waterbodies. Because of the data type differences 
between an eight-bit integer (0-255) with the “NIR only” method and a floating-point value of ±1 
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with the NDWI method, it is possible that the author’s ad hoc means of choosing that threshold were 
not equivalent between the methods.

Future improvements to these techniques must involve choosing better aerial imagery sources 
and investigating calibration of the method of water identification. This relates to the data source and 
either of the two methods tested, the NAIP-NDWI or NAIP-NIR only methods. The differences seen 
between these two water identification methods in the first step of the model could be due to many 
factors including vegetation or algal blooms in the water, suspended sediments, or a combination 
of these two and other unknown factors that are particular to the time the imagery was collected. 
Chen et al. (2022) review remote sensing papers related to assessing remote sensing techniques for 
inland water quality. They summarize from this meta-analysis that remotely sensed imagery of inland 
waterbodies, in general, have low accuracy because of multiple factors. The research they reviewed 
corroborated our findings in that the nature of turbidity related to concentrations of chlorophyll-a, 
suspended particulate matter, and colored dissolved organic matter. Of course, the clorophyll-a 
they are observing is often algae, and sometimes our error was related to the leaf area of vegetation 
growing in the reservoir. These sources of error are further corroborated by Yigit et al. (2019) who 
characterize water in the Borabey Lake area in Eskisehir, Turkey for water quality using RapidEye 
Satellite imagery. Other than finding fishponds, we found that the largest portion of the error in our 
model is differentiating water from soil or vegetation because of turbidity or plants growing in the 
reservoirs. For these reasons, testing different water identification techniques combined with better 
data would certainly be two future streams of inquiry that hold promise for improving accuracy.

The water identifies on the aerial imagery raster by the model results in a polygon representing 
the waterbody boundary. Some of the waterbodies in eastern Arkansas contain vegetation. When 
there is an existing vegetation layer on the waterbody, the model will not identify water, or, in some 
cases, the model will identify the waterbody but will miscalculate the area depending on how much 
of the waterbody is covered in vegetation and/or is high in turbidity. We suspect that this error in 
identifying waterbody boundaries contributes to errors in waterbody area, count, and in the accuracy 
assessment (Tables 4, 5, and 6 – Waterbody Areas, Counts and the Assessment Confusion Matrix).

“Leaf-off” imagery collection takes place in the cooler and wetter part of the year in this study 
area. Therefore, using “leaf-off” imagery might be superior to “leaf-on” imagery, suggesting that 
NAIP is not the optimal aerial imagery for water detection. This is partly because of the vegetation 
blocking the water in the growing season when NAIP is collected. This is also because some reservoirs 
may be at lower levels in this period because they are being used for irrigation. The reduced depth 
of water in the reservoir not only contributes to an increase in vegetative growth in low-water and 
empty reservoirs but also changes the position of the shoreline along the reservoir levee. These 
factors suggest using “leaf-off” imagery collected in the spring, when reservoirs are full, would likely 
improve the model accuracy.

Based on a report by Shelby Johnson, the Director of the Arkansas GIS Office (Arkansas GIS 
Board - 3rd Quarterly Meeting, 2023), we anticipate two updates to datasets that might dramatically 
improve the success rate of this model. The first is a 0.228-m resolution, leaf-off aerial multi-spectral 
(RGB and NIR) imagery dataset collected for the entire state of Arkansas in the winter of 2022-2023 
(ADOP, 2023). This dataset is currently being processed and is expected to be completed and released 
in early 2024. The second dataset is an anticipated 0.5-m LiDAR-based elevation collection funded 
by the USDA-NRCS to update the 3DEP elevation dataset. Funding is in place, and the plan is to 
collect the entire lowland portion of eastern Arkansas in the leaf-off period of the winter of 2023-
2024. Upon the availability of these two datasets, the leaf-off aerial imagery and the new sub-meter 
LiDAR-based DEM could directly be used by this model to produce an up-to-date reservoir inventory 
for eastern Arkansas. The update period of these datasets (especially elevation) should drive future 
reservoir inventory efforts in the region.

Finally, it is expected that, with slight modifications to the buffer zones, this model should be 
able to utilize Sentinel 2 multi-spectral satellite imagery (20- to 30-m spatial resolution) to better 
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identify water than the NIR collected aerially. Moreover, Sentinel 2 has shortwave infrared bands 
which might be able to identify turbid water and vegetated waterbodies better than the current aerial 
method. The expected difficulty with this method is the availability of a timely global 10- to 20-m 
elevation dataset which could be used to assess waterbody elevation. If this elevation layer can be 
located, and the model calibrated for this lower resolution, our model should work worldwide to find 
raised bodies of water in otherwise low relief environments.

Additional future work might use the spectral characteristics of these reservoirs in a way that 
allows for the identification of more turbid water. When considering the limitations presented by 
the spectral effects of suspended sediment in waterbodies, this seems to be a major limitation for 
identification. It is possible that, without incorporating uncommonly available shortwave infrared 
bands in the analysis, this is just not possible with the currently available data. Using lower resolution 
Sentinel 2 imagery might address this as long as the 20-meter resolution allows for reasonable reservoir 
boundary characterization.

CONCLUSION

The critical groundwater regions of eastern Arkansas are important for their diverse agricultural 
production. The proliferation of irrigation reservoirs has complicated the efforts to conjunctively 
manage the region’s water resources. One critical component of managing regional surface water is 
a proper inventory of irrigation reservoirs. Before this paper, there was a single inventory in the study 
region produced in 2017 by Yaeger et al. from 2015 NAIP imagery. Notably, the visually curated 
methods used to generate this dataset were time intensive, and even though the dataset is only six 
years old, it is already in need of updating.

The novel contribution to the literature supplied by this research is the automation of a collection 
of practical remote sensing and GIS based methods into an ArcGIS Pro based model. The model 
produced by this research was able to find 3,527 irrigation reservoirs within a 2.38-Mha area in less 
than an hour using an off-the-shelf laptop. The benefit of this model over the methods employed by 
Yeager et al (2017) is that this model is fast at finding reservoirs (and apparently raised fishponds) 
and can be reused once new aerial imagery and elevation data are generated.

While its overall accuracy of 82% may not seem great, it should be noted that 13.2% of the 
overall error is related to false-positive detections of raised fishponds as reservoirs. So, if the purpose 
of the model is adjusted to finding reservoirs and raised fishponds and this error is removed, the 
overall accuracy would rise to 95%. Based on these reasons, we can say we met our objectives. 
This model fills the gap now, by updating the existing reservoir inventory and provides means for 
keeping such gaps filled in the future by creating a model to automate this process. The resulting 
inventory and set of methods for keeping it up to date are necessary precursors to ongoing effective 
conjunctive water management, especially for regions needing to develop surface water resources 
to offset groundwater declines.

The model is useful for accurately identifying on-farm reservoirs (and raised fishponds) 
in eastern Arkansas. This approach and this tool should be useful across the broader MAP and 
other low-relief alluvial environments. Such inventories are important components for future 
reservoir establishment and site selection. Moreover, consideration of a region’s current and 
future potential reservoirs will improve groundwater modeling efforts aimed at predicting local 
variations in groundwater levels over time.

AUTHOR’S NOTE

An ArcGIS Pro project folder with our model, our results and the Yaeger er al (2017) boundaries 
and Shults et al (2024) establishment dates have been made available at Shults, Daniel D.; Nowlin, 
John W.; Massey, Joseph H.; Reba, Michele L. (2024). Data from: Automated Detection of On-Farm 
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